
Border collision bifurcations, snap-back repellers, and chaos

Paul Glendinning*
School of Mathematics and Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA),

University of Manchester, Manchester M13 9PL, United Kingdom

Chi Hong Wong
School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom

�Received 28 November 2008; published 26 February 2009�

The normal form for codimension 1 border collision bifurcations of fixed points of discrete time piecewise
smooth dynamical systems is considered in the unstable case. We show that in appropriate parameter regions
there is a snap-back repeller immediately after the bifurcation, and hence that the bifurcation creates chaos.
Although the chaotic solutions are repellers they may explain observations, and this is illustrated through an
example.
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Many applications of computer software involve the mod-
eling and control of systems which depend on both discrete
and continuous variables, and so a good understanding of the
interaction between these components of the system is im-
portant. These systems are often called hybrid or embedded
systems, and there is a growing literature of both applica-
tions and theory �1–4�. From the perspective of dynamical
systems a description of the simple bifurcations which can
occur in these systems is important, and many examples are
now well understood.

The systems considered here are piecewise smooth and
have discrete time and continuous variables. There is a
switching surface � dividing the regions in which the dy-
namics is determined by smooth maps, and the equations are
continuous across �. Thus the left and right sides of � could
be labeled by L and R, respectively, and a discrete variable
defined to take values in �L ,R� according to which side of �
the continuous variables are at time n. This discrete variable
then determines which dynamical system is applied at the
next time step.

Perhaps the most obvious codimension 1 bifurcation of
such systems occurs if a fixed point �or periodic orbit� of the
system is on �or has a point on� the switching boundary �.
The two-dimensional normal form for this bifurcation was
derived in �1,5�, and if the switching surface is transformed
to be the y axis �x=0� then the local evolution with x
= �x ,y�T is

xn+1 = �ALx + m if x � 0

ARx + m if x � 0
� , �1�

where the matrices AL and AR, and the vector m are defined
as

A� = 	 T� 1

− D� 0

 and m = 	�

0

 �2�

for �=L ,R. The constants T� and D� are the trace and de-
terminant of the Jacobian of the defining equations evaluated

at the bifurcation point on the left and right of �, while � is
the bifurcation parameter. If �=0 then the origin is a fixed
point, and this is clearly in �. The question for bifurcation
theory is what happens close to the origin when ��� is small.

If �DR� and �DL� are less than 1 then the local dynamics
which can occur has been discussed in a number of papers
�1,3,6–9�. In this case bifurcations analogous to the standard
saddle node are possible, as is a border crossing in which the
fixed point simply moves across the boundary. Depending on
the values of the other constants, more complicated possibili-
ties occur, with the creation of other periodic orbits and even
chaos. Since the determinant of the Jacobian matrix of a map
shows how areas are increased or decreased by iteration, the
determinant less than 1 cases can be expected to give infor-
mation about the stable dynamics which can be observed. It
might be imagined that the case of a determinant with modu-
lus greater than 1 is either uninteresting or could be obtained
from the modulus less than 1 case by reversing time. How-
ever, neither of these is the case: if the map is not invertible
we cannot simply reverse time, and the dynamics described
below is certainly interesting and relevant to some examples.

The existence of complicated �chaotic� dynamics in the
case of a determinant with modulus greater than 1 follows
from the theory of snap-back repellers �10–13�. Since the
systems considered here are not differentiable across the
boundary, we give a brief description of how this theory
works below. Next we prove the existence of a snap-back
repeller and hence unstable chaos in Eq. �1� for appropriate
values of the constants defining AL and AR and then show
how this bifurcation can be observed in an example of a
blowout bifurcation.

Let GL denote the half plane with x�0 and GR denote the
half plane with x�0. For a map such as Eq. �1�, we will use
the notation FL and FR to denote the map in GL and GR,
respectively. Following �11�, we say that the map �1� has a
simple snap-back repeller if, possibly after the transforma-
tion x→−x �which exchanges the roles of L and R�, there
exists a fixed point x*

R in x�0 and
�i� the eigenvalues of AR have modulus strictly greater

than one and DL�0;
�ii� there is a point x0

L in x�0 such that FL�x0
L�=x*
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�iii� there exists a sequence xi
R in x�0 which tends to x*

R

as i→	 such that FR�xi+1
R �=xi

R, i=1,2 ,3 , . . . and FR�x1
R�

=x0
L.
This is shown in Fig. 1. Note that the first condition im-

plies that x*
R is a source with a two-dimensional local un-

stable manifold and so there can be no conventional ho-
moclinic orbits such as those of the Lozi map.

Of course, more complicated connections are possible,
with several passages across the boundary, or more than one
path, but this is sufficient for our needs here.

We need to define a set of neighborhoods of the points
which define the snap-back repeller and on which the chaotic
dynamics can be defined. We start by choosing a closed ball
of radius r centered on x1

R, B�1,r�, and take r small enough
so that B�1,r��GR, FR(B�1,r�)=B�0,r��GL and none of
the other points xi

R, i=2,3 , . . ., are contained in B�1,r�.
Now define B�2,r� to be those points in GR which map to

B�1,r� under one iteration of FR, and again, possibly reduc-
ing the size of r this is a closed set in GR which does not
contain any points in �. Define B�n ,r� inductively so that
FR(B�n ,r�)=B�n−1,r� and B�n ,r� does not intersect �. Note
that after a finite number of steps these sets, whose maxi-
mum width tends to zero, will be sufficiently close to x*

R and
sufficiently small so that no reduction of r will be necessary.

Let N�r�=FL(B�0,r�), which is a set in GR �possibly hav-
ing reduced r to ensure no intersection with �� containing x*

R

in its interior. By definition, the sets B�n ,r� converge to x*
R

and their maximal diameters tend to zero, so there exists K
�0 such that B�k ,r��N�r� for all k�K. By construction
FL �FR

k (B�k ,r�)=N�r� and FL �FR
k restricted to B�k ,r� is a ho-

meomorphism �in fact, affine�. Hence for every k1�K there
exists a closed connected set B�k ,k1 ,r��B�k ,r� such that
FL �FR

k (B�k ,k1 ,r�)=B�k1 ,r�. The standard induction argu-
ment for dynamical systems �using the convergence of
nested close sets� implies that for any M �0 and any se-
quence k0 ,k1 ,k2 , . . . with K�ki�K+M there exists a non-
empty set B�k0 ,k1 ,k2 , . . . ,r��B�k0 ,r� such that

FL � FR
k0
„B�k0,k1,k2, . . . ,r�… = B�k1,k2,k3, . . . ,r� �3�

and hence that there is an unstable chaotic invariant set con-
taining infinitely many periodic points and uncountably
many aperiodic points close to the simple snap-back repeller.

Because the argument is so simple in this restricted case it
has been worth rehearsing how the simple snap-back repeller
implies chaos, as there has been some controversy about the
original idea �10,11�, and the system �1� does not formally

satisfy all the conditions usually imposed; a formalism which
is applicable directly to Eq. �1� can be found in �13�.

Now return to the normal form �1�. Suppose that T� and
D�, �=L ,R, are given. The fixed points of the maps are
given by

x*
� =

�

1 − T� + D�

, y*
� = − D�x*

�, � = L,R �4�

and x*
R exists provided x*

R �0, with a similar inequality for

the existence of x*
L. Given T� and D� these inequalities de-

fine the sign of � for which these fixed points exist. The
fixed points in GR and GL coincide at the origin �on �� if
�=0.

The geometry of the map near the boundary controls
much of what can be observed. The image of the boundary �
is the x axis, and since yn+1=−D�xn, GR �with x�0� is
mapped to the upper �respectively lower� half plane if DR
�0 �respectively DR�0� and GL is mapped to the upper
�respectively lower� half plane if DL�0 �respectively DL
�0�. In other words, the images of GL and GR overlap if DR
and DL have opposite signs �one positive and one negative�,
and do not overlap if they have the same signs. This obser-
vation goes a long way towards explaining why boundary
crossing occurs if the determinants have the same sign, and
more complicated bifurcations can occur otherwise.

To fix ideas we will consider the case

DR � 1, DL � 0 �5�

and aim to show the existence of a snap-back repeller to x*
R.

For geometric simplicity we will make the further assump-
tion that x

R
* is an unstable node, so the eigenvalues of AR are

real and distinct and greater than 1. This corresponds to the
additional condition

TR � 2, TR
2 � 4DR, 1 − TR + DR � 0 �6�

which implies that the fixed point in GR given by Eq. �4�
exists if ��0. Then Eq. �5� implies that the images of GR
and GL lie in the lower half plane, and hence that there is a
preimage of x*

R in GL if y*
R �0, which is automatically satis-

fied from Eq. �4� as DR�0.
A short calculation using Eq. �1� shows that this point,

x0
L= �x0 ,y0� in the notation of the previous section, is given

by

x0 =
DR

DL
x*

R, y0 =
1

DL
�TRDL − TLDR − DLDR�x*

R . �7�

By definition the point x1
R of Fig. 1 is a preimage of x0

L in
x�0, and for this preimage to exist we must have y0�0
since the images of both GR and GL are in the lower half
plane. Since DL�0 and x*

R �0 this implies that the condition

TRDL − TLDR − DLDR � 0 �8�

must hold. In this case x1
R= �x1 ,y1� exists and by definition x0

R

is mapped to it by the map in x�0 so

x0 = TRx1 + y1 + � ,

�
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FIG. 1. The geometry of a simple snap-back repeller.
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y0 = − DRx1 �9�

and hence, using Eqs. �4� and �7�,

x1 = −
1

DLDR
�TRDL − TLDR − DLDR�x*

R ,

y1 =
1

DLDR
�DR�DR − DL − DLDR� + TR�TRDL − TLDR��x*

R .

�10�

Note that Eq. �8� ensures that this point does exist in GR.
Looking back to the definition of a snap-back repeller it

remains to show that x1
R lies in the two-dimensional unstable

manifold of x*
R, i.e., if x1

R is iterated in backwards time using
the map in x�0 then this orbit remains in x�0 and con-
verges to x*

R.
By Eq. �6� the eigenvalues and eigenvectors of the linear

part of the map in x�0 are

s
 =
1

2
�TR 
 �TR

2 − 4DR�, e
 = 	 s


− DR

 �11�

with s
�1 and hence the eigenvectors both have negative
slopes. Except for solutions on e+, orbits of the linear map
therefore converge in backwards time to x*

R on generalized
parabolas which are tangential to e− �the eigenvalue with
smaller modulus� at the fixed point, and this is the eigenvec-
tor with the steeper slope. Thus solutions in backwards time
lie on curves as sketched in Fig. 2, and clearly all solutions
in y�0 which start to the left of e+ tend to the fixed point
along solution curves which lie in x�0 and y�0 for all time
and so there will be a simple snap-back repeller.

The remaining �sufficient but not necessary� condition for
the snap-back repeller to exist if TR�0 is that x1

R lies to the
left of e+. The line of the eigenvector through x*

R is

y=−
DR

s+
�x+ �s+−1�x*

R� and so the geometric condition which
guarantees the existence of the snap-back repeller is

s+y1 � − DR�x1 + �s+ − 1�x*
R� �12�

which, after some manipulation gives

s+DR�DR − DL� + �s+TR − DR��TRDL − TLDR� � 0. �13�

In the arguments above we have accumulated a number of
conditions: Eqs. �5�, �6�, �8�, and �13� with TR�0. We now

need to show that there are some values of the parameters
which satisfy all these conditions simultaneously. We start by
setting

DR = 10, TR = 7 �14�

in which case s+=5 and since 1−TR+DR=4 the fixed point
exists if ��0. The final two constraints give

− 3DL − 10TL � 0, 10 + 3DL − 5TL � 0. �15�

To show how the existence of the snap-back repeller is to
some extent independent of the linear type of the flow in GL
we consider briefly several possibilities which satisfy these
constraints.

First suppose that

TL = 0, 0 � − DL � 1. �16�

Then both conditions in Eq. �15� are satisfied so the snap-
back repeller exists if ��0. The fixed point in GL is stable
and since 1−TL+DL�0 it exists if ��0. Hence as � in-
creases through zero a stable fixed point is destroyed and an
unstable fixed point with a strange invariant set from the
snap-back repeller is created �possibly with other recurrent
dynamics; we have not made an exhaustive study here�. If
TL=−1 and DL=− 1

4 there is a similar bifurcation but in this
case the stable fixed point in ��0 is replaced by a saddle.

Another interesting transformation occurs if

DL = − 2, TL �
3

5
�17�

which satisfies Eq. �15�, so the snap-back repeller exists in
��0. If −1�TL�

3
5 then 1−TL+DL�0 and so the fixed

point in GL also exists if ��0. So in this case we know of
no recurrent dynamics if ��0, but two fixed points and the
strange invariant set exist if ��0. Note that Eq. �17� shows
that the snap-back repeller can exist for ��0 over an un-
bounded set of the values of the other parameters in the
problem.

If TR�0 and both eigenvalues are real and less than mi-
nus 1, then the same arguments can be made, and Eq. �6�
needs to hold, but the equivalent simple geometric condition
to Eq. �13� is less helpful. Of course, given an example it is

FIG. 3. Bifurcating orbits in the �� ,x� plane for the third iterate
of the map for the border collision of Eq. �18� with a=1.8. Except
for the period 3 orbit in x�a−1, each orbit has one point in x
�a−1 and n in x�a−1; orbits with n=0,1 ,2 ,3 ,4 are shown �peri-
ods 3–15 for the map�.
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FIG. 2. The geometry of the linear flow in GR. Solutions lie on
curves which �with the exception of e+� are linear transformations
of generalized parabolas y=xln s+/ln s−.
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straightforward to determine whether �x1 ,y1� given by Eq.
�10� lies in the two-dimensional unstable manifold of x*

R in
GR by backwards iteration of one branch of the map. This
allows us to consider the coupled map system introduced in
�14� to investigate blowout bifurcations:

xn+1 = �1 − ��fa�xn� + �fa�yn� ,

yn+1 = �fa�xn� + �1 − ��fa�yn� , �18�

where �� �0, 1
2 � and fa : �0,1�→ �0,1� is the skew tent map

fa�z� = az if z � a−1

a

a − 1
�1 − z� if z � a−1 �, a � 1. �19�

The synchronized state x=y is transversely stable provided
��

1
2a , but if ��

1
2a nonsynchronized orbits can be created

from the two boundaries x=a−1 and y=a−1. One of the sim-
plest border collisions in this example is for orbits of period
3. If a=1.8 and �=0.18, then there are two period 3 orbits,
one with a point close to x=a−1�0.555 at �0.553, 0.737� and
the other with a point at �0.559, 0.736�. As � increases these
tend to the boundary, one from the left and the other from the
right, and there is a border collision at ��0.1845. For the

third iterate of the map these are repelling fixed points, and
�again for the third iterate� TL�−9.83, DL�21.77, TR
�−1.44, and DR�−27.21. Condition �6� is satisfied, and
since this is the negative trace case we have checked numeri-
cally that the backward orbit of the preimage of the periodic
point does indeed tend to the periodic point in backwards
time without crossing the border, which shows that the left
hand period 3 point �0.553, 0.737� is a snap-back repeller �so
the role of left and right are interchanged here�. Figure 3
shows some of the bifurcating orbits. Following the blowout
bifurcation these orbits become part of the attractor for the
system, so their creation and existence are important to un-
derstanding the eventual attractor of Eq. �18�.

In this Rapid Communication we have shown that snap-
back repellers exist in the normal form for unstable border
collision bifurcations, which makes it possible to predict the
existence of chaotic solutions. These solutions are repelling,
but can help explain the existence of periodic and aperiodic
orbits which play an important role in the dynamics of the
system as described in �15�. A fuller description of the cases
will be given elsewhere.
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